19 research outputs found

    Cause Identification of Electromagnetic Transient Events using Spatiotemporal Feature Learning

    Full text link
    This paper presents a spatiotemporal unsupervised feature learning method for cause identification of electromagnetic transient events (EMTE) in power grids. The proposed method is formulated based on the availability of time-synchronized high-frequency measurement, and using the convolutional neural network (CNN) as the spatiotemporal feature representation along with softmax function. Despite the existing threshold-based, or energy-based events analysis methods, such as support vector machine (SVM), autoencoder, and tapered multi-layer perception (t-MLP) neural network, the proposed feature learning is carried out with respect to both time and space. The effectiveness of the proposed feature learning and the subsequent cause identification is validated through the EMTP simulation of different events such as line energization, capacitor bank energization, lightning, fault, and high-impedance fault in the IEEE 30-bus, and the real-time digital simulation (RTDS) of the WSCC 9-bus system.Comment: 9 pages, 7 figure

    Co-optimization of Operational Unit Commitment and Reserve Power Scheduling for Modern Grid

    Full text link
    Modern power grids combine conventional generators with distributed energy resource (DER) generators in response to concerns over climate change and long-term energy security. Due to the intermittent nature of DERs, different types of energy storage devices (ESDs) must be installed to minimize unit commitment problems and accommodate spinning reserve power. ESDs have operational and resource constraints, such as charge and discharge rates or maximum and minimum state of charge (SoC). This paper proposes a linear programming (LP) optimization framework to maximize the unit-committed power for a specific optimum spinning reserve power for a particular power grid. Using this optimization framework, we also determine the total dispatchable power, non-dispatchable power, spinning reserve power, and arbitrage power using DER and ESD resource constraints. To describe the ESD and DER constraints, this paper evaluates several factors: availability, dispatchability, non-dispatchability, spinning reserve, and arbitrage factor. These factors are used as constraints in this LP optimization to determine the total optimal reserve power from the existing DERs. The proposed optimization framework maximizes the ratio of dispatchable to non-dispatchable power to minimize unit commitment problems within a specific range of spinning reserve power set to each DER. This optimization framework is implemented in the modified IEEE 34-bus distribution system, adding ten DERs in ten different buses to verify its efficacy

    Reserve Allocation in Active Distribution Systems for Tertiary Frequency Regulation: A Coalitional Game Theory-based Approach

    Full text link
    This paper proposes a coalitional game theory-based approach for reserve optimization to enable DERs participate in tertiary frequency regulation. A two-stage approach is proposed to effectively and precisely allocate spinning reserve requirements from each DER in distribution systems. In the first stage, two types of characteristic functions: worthiness index (WI) and power loss reduction (PLR) of each coalition are computed. In the second stage, the equivalent Shapley values are computed based on the characteristic functions, which are used to determine distribution factors for reserve allocation among DERs

    An Economic-Reliability Security-Constrained Optimal Dispatch for Microgrids

    No full text
    corecore